Aluminum adjuvants elicit fibrin-dependent extracellular traps in vivo.

نویسندگان

  • Michael W Munks
  • Amy S McKee
  • Megan K Macleod
  • Roger L Powell
  • Jay L Degen
  • Nichole A Reisdorph
  • John W Kappler
  • Philippa Marrack
چکیده

It has been recognized for nearly 80 years that insoluble aluminum salts are good immunologic adjuvants and that they form long-lived nodules in vivo. Nodule formation has long been presumed to be central for adjuvant activity by providing an antigen depot, but the composition and function of these nodules is poorly understood. We show here that aluminum salt nodules formed within hours of injection and contained the clotting protein fibrinogen. Fibrinogen was critical for nodule formation and required processing to insoluble fibrin by thrombin. DNase treatment partially disrupted the nodules, and the nodules contained histone H3 and citrullinated H3, features consistent with extracellular traps. Although neutrophils were not essential for nodule formation, CD11b(+) cells were implicated. Vaccination of fibrinogen-deficient mice resulted in normal CD4 T-cell and antibody responses and enhanced CD8 T-cell responses, indicating that nodules are not required for aluminum's adjuvant effect. Moreover, the ability of aluminum salts to retain antigen in the body, the well-known depot effect, was unaffected by the absence of nodules. We conclude that aluminum adjuvants form fibrin-dependent nodules in vivo, that these nodules have properties of extracellular traps, and the nodules are not required for aluminum salts to act as adjuvants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extracellular DNA and histones as thrombus stabiliser.

Recent work suggests that extracellular (cell-free) nucleic acids, both DNA and RNA species, as well as extracellular nucleosomes can activate blood coagulation and promote thrombosis in vitro and in vivo (1, 2). Indeed, they substantially contribute to the development of microvascular thrombosis which can act as an intravascular immune response to circulating bacteria and has been termed immun...

متن کامل

Procoagulant role of neutrophil extracellular traps in patients with gastric cancer.

BACKGROUND Patients with gastric cancer (GC) commonly exhibit a hypercoagulable state that results in significant morbidity and mortality. Recent studies have shown that neutrophil extracellular traps (NETs) trigger coagulation through an intrinsic pathway and contribute to thrombus initiation and progression. In this study, we aimed to determine the procoagulant activity (PCA) of NETs in patie...

متن کامل

Visualization of Neutrophil Extracellular Traps and Fibrin Meshwork in Human Fibrinopurulent Inflammatory Lesions: II. Ultrastructural Study

Neutrophil extracellular traps (NETs) represent an extracellular, spider's web-like structure resulting from cell death of neutrophils. NETs play an important role in innate immunity against microbial infection, but their roles in human pathological processes remain largely unknown. NETs and fibrin meshwork both showing fibrillar structures are observed at the site of fibrinopurulent inflammati...

متن کامل

Visualization of Neutrophil Extracellular Traps and Fibrin Meshwork in Human Fibrinopurulent Inflammatory Lesions: I. Light Microscopic Study

Neutrophil extracellular traps (NETs) are extracellular fibrillary structures composed of degraded chromatin and granules of neutrophil origin. In fibrinopurulent inflammation such as pneumonia and abscess, deposition of fibrillar eosinophilic material is a common histopathological finding under hematoxylin-eosin staining. Expectedly, not only fibrin fibrils but also NETs consist of the fibrill...

متن کامل

Platelets and neutrophil extracellular traps collaborate to promote intravascular coagulation during sepsis in mice.

Neutrophil extracellular traps (NETs; webs of DNA coated in antimicrobial proteins) are released into the vasculature during sepsis where they contribute to host defense, but also cause tissue damage and organ dysfunction. Various components of NETs have also been implicated as activators of coagulation. Using multicolor confocal intravital microscopy in mouse models of sepsis, we observed prof...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Blood

دوره 116 24  شماره 

صفحات  -

تاریخ انتشار 2010